Linear-to-branched micelles transition: a rheometry and diffusing wave spectroscopy (DWS) study.

نویسندگان

  • C Oelschlaeger
  • M Schopferer
  • F Scheffold
  • N Willenbacher
چکیده

The frequency-dependent shear modulus of aqueous wormlike micellar solutions of cetylpyridinium chloride (CPyCl) and sodium salicylate (NaSal) has been measured over a broad frequency range from 10(-2) to 10(6) rad/s using diffusing wave spectroscopy (DWS) based tracer microrheology as well as mechanical techniques including rotational rheometry and oscillatory squeeze flow. Good agreement between mechanical and optical techniques is found in the frequency range from 10(-1) to 10(5) rad/s (Willenbacher, N.; Oelschlaeger, C.; Schopferer, M.; Fischer, P.; Cardinaux, F.; Scheffold, F. Phys. Rev. Lett. 2007, 99 (6), 068302). At intermediate frequencies between 10 and 10(4) rad/s, squeeze flow provides most accurate data and is used to determine the plateau modulus G(0), which is related to the cross-link density or mesh size of the entanglement network, as well as the scission energy E(sciss), which is deduced from the temperature dependence of the shear moduli in the plateau zone. In the frequency range above 10(4) rad/s, DWS including a new inertia correction is most reliable and is used to determine the persistence length l(p). The system CPyCl/NaSal is known to exhibit two maxima in zero-shear viscosity and terminal relaxation time as the salt/surfactant ratio R is varied (Rehage, H.; Hoffman, H. J. Phys. Chem. 1988, 92 (16), 4712-4719). The first maximum is attributed to a transition from linear to branched micelles (Lequeux, F. Europhys. Lett. 1992, 19 (8), 675-681), and the second one is accompanied by a charge reversal due to strongly binding counterions. Here, we discuss the variation of G(0), E(sciss), and l(p) with salt/surfactant ratio R at constant surfactant concentration of 100 mM CPyCl. G(0) increases at the linear-to-branched micelles transition, and this is attributed to the additional contribution of branching points to the cross-link density. E(sciss) exhibits two maxima analogous to the zero-shear viscosity, which can be understood in terms of the variation of micellar length and variation of the amount of branched micelles and contour length between branching points consistent with the results of a comprehensive cryo-transmission electron microscopy (TEM) study (Abezgauz, L.; Ramon, O.; Danino, D. Department of Biotechnology and Food Engineering, Technion, Haifa, Israel. European Colloid and Interface Society, Geneva, 2007). The persistence length decreases with increasing R. This decrease is stronger than expected from the decrease of Debye length according to the Odijk-Skolnick-Fixman (OSF) theory and is attributed to the penetration of salicylate ions into the micelles; the linear-to-branched transition obviously does not have an effect on l(p).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Broad bandwidth optical and mechanical rheometry of wormlike micelle solutions.

We characterize the linear viscoelastic shear properties of an aqueous wormlike micellar solution using diffusing wave spectroscopy (DWS) based tracer microrheology as well as various mechanical techniques such as rotational rheometry, oscillatory squeeze flow, and torsional resonance oscillation covering the frequency range from 10(-1) to 10(6) rad/s. Since DWS as well as mechanical oscillator...

متن کامل

Geometric constraints for the design of diffusing-wave spectroscopy experiments.

Diffusing-wave spectroscopy (DWS) experiments require the choice of suitable sample geometry. We study sample geometries for transmission experiments by performing DWS measurements on a variable thickness cell. The data reveal that DWS works well, giving consistent answers to within 5% when the cell is more than 10 random walk step lengths thick, and that the input geometry is less significant ...

متن کامل

Experimental study of the potential use of diffusing wave spectroscopy to investigate the structural characteristics of blood under multiple scattering.

The extension of the photon correlation spectroscopy (PCS) in multiple scattering regime, so-called diffusing wave spectroscopy (DWS) was employed to the study of blood samples. Multiple scattered light from a helium-neon (He-Ne) laser beam incident on the blood samples was detected by a photomultiplier, and both the temporal autocorrelation intensity functions g 2(tau) and power spectra S(omeg...

متن کامل

Multispeckle diffusing-wave spectroscopy with a single-mode detection scheme.

We present a detection scheme for diffusing-wave spectroscopy (DWS) based on a two-cell geometry that allows efficient ensemble averaging. This is achieved by putting a fast rotating diffuser in the optical path between laser and sample. We show that the recorded (multispeckle) correlation echoes provide an ensemble averaged signal that does not require additional time averaging. Furthermore, c...

متن کامل

Time-resolved diffusing wave spectroscopy applied to dynamic heterogeneity imaging.

We report what is to our knowledge the first observation of a time-resolved diffusing wave spectroscopy (DWS) signal recorded by transillumination through a thick turbid medium: the DWS signal is measured for a fixed photon transit time, which opens the possibility of improving the spatial resolution. This technique could find biomedical applications, especially in mammography.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Langmuir : the ACS journal of surfaces and colloids

دوره 25 2  شماره 

صفحات  -

تاریخ انتشار 2009